Pursuing a Lingua Franca for Space Mission Planning Applications

Dr. Jeremy Frank
NASA Ames Research Center
Outline

• Space Mission Planning
• Automated Planning
• Model-Based Planning and Languages
• Model-Based Planning Applications
• Pros and Cons
• Roadmap
• Conclusion
Space Mission Planning

- Mission planning is a key part of the Mission Operations System (MOS).
- Mission Planning is the process of determining how and when spacecraft subsystems will act.
- The Mission Planning System (MPS) is the software that helps the Mission Planner perform this task.
Space Mission Planning

• The Mission Planning System is integrated with other parts of the MOS:
 – Sequencing, Flight Dynamics, Attitude determination, Command and Telemetry, Flight software
 – Surface Operations, Science operations

• The Mission Planning System integrates this information, allows planning and scheduling, checks constraints.
Automated Planning

- Automated planning functions or services in the Mission Planning System include:
 - Automated planning, e.g. action selection
 - Automated scheduling, e.g. action ordering
 - Constraint checking, e.g. evaluation of resource constraints, time constraints, checking conditions
Automated Planning

• Mixed Initiative planning blends automated planning with user actions
 – Manual planning or scheduling
 – Adding new constraints
 – Waiving constraint violations and removing constraints
Model Based Planning and Languages

• A model-based planner is
 – A configurable automated planner
 – Employing a language to describe the planning problem

• The language elements include
 – Objects, states and resources
 – Actions
 • Conditions and Effects
Model Based Planning and Languages

• A planning problem consists of
 – A model
 – An initial state description
 – A set of goal states

• The software reads the description and produces a plan

• There are myriad algorithms with many different properties
Model Based Planning and Languages

• Model elements in more detail
 – Objects – things in the world
 • E.g. targets, spacecraft components
 – State variables – time-varying properties
 • E.g. available power, mode of system
 – Actions
 • Conditions – what must be true for an action to have the desired effect
 • Effects – what changes when the action is executed
Model Based Planning and Languages

(:durative-action slew
 :parameters (?from – attitude ?to - attitude)
 :duration (= ?duration 5)
 :condition
 (and (at start (pointing ?from))
 (at start (cpu-on))
 (over all (cpu-on))
 (at start (>= (sunangle) 20.0))
 (over all (>= (sunangle) 20.0))
 (at start (communicating))
 (over all (communicating))
 (at start (>= (batterycharge) 2.0))))

:effect
 (and (at start (decrease (batterycharge)2.0))
 (at start (not (pointing ?from)))
 (at end (pointing ?to))))
Model Based Planning and Languages

• Comparison: Linear Programming
 – LP solver is a piece of software
 – It accepts as input a language:
 • Variables, linear constraints over variables, linear objective function over the same variables
 – Objective: maximize objective while satisfying all linear constraints
 • User has limited (or no) control over solver
 – Max: x+y-3z
 – Subj: x-z<4, y-z<2, 0≤x≤10, 0≤y≤10, 0≤z≤10
Model Based Planning and Languages

• Comparison: Satellite Toolkit
 – Configure spacecraft
 • Orbit, sensors, solar panels & battery, ACS...
 – Simulate orbits
 – Report on metrics
 • Coverage, orbit ephemerides, power, etc.

• Automated planners can be built on top of StK but it does not do the actual planning and scheduling itself.
 – http://www.riversideresearch.org/labs/modeling_and_application_development_lab
Model Based Planning Applications

• Fielded space mission applications:
 – Modified Antarctic Mapping Mission Scheduler
 • Antarctic Synthetic Aperture Radar scheduling
 – MAPGEN
 • Mars Exploration Rover science activity planning
 – Phoenix Science Interface
 • Phoenix Mars mission science activity planning
 – MEXAR II
 • Mars Express downlink scheduling
Model Based Planning Applications

• Fielded space mission applications:
 – Orbital Express Ground System
 • Communications and commanding scheduling
 – Solar Array Constraints Engine
 • ISS solar array planning
 – Data Chaser Automated Planner and Scheduler
 • STS-85 payload planner and scheduler
 – EO-1 Ground System
 • Earth observing satellite scheduler
Model Based Planning Applications

• Space mission applications in development:
 – LASS
 • LADEE (Lunar Atmospheric Dust Explorer) planning
 – MSLICE
 • Curiosity Mars rover science activity planning
 – NGPS
 • ISS crew activity planning and scheduling
Model Based Planning
Pros and Cons

• Pros
 – Flexibility during MPS development
 • Models can be revised with no code changes
 – Expressive
 • Able to model many applications
 • More intuitive than (e.g.) linear programming
 – Open and public domain
 • Many languages developed in academia
 • Many planners and tools are freely available
Model Based Planning
Pros and Cons

• Cons
 – Simplistic modeling language
 • Unable to describe complex continuous constraints
 • Limited built-in (semantic) integration with other engines e.g. Matlab, StK
 • Can be tricky to use (modeling, planners)
 – User interfaces lacking
 • Critical for plan and model visualization
 – Not an industry standard
 – Not (quite) an academic standard either
 • Several languages, many dialects!
Roadmap

• Definitions of terms
 – State, action, object, constraint, resource, etc.
 – Use academic work as a springboard

• Model elements
 – Logical vs visual (UI) elements
 – Ontologies

• Tool integration standards
 – More ontologies?

• OMG standard (see backup slides)
Conclusion

- Model-based planning is a paradigm worth following for space mission application development.
- Model based planning has been used in several space mission applications – As well as numerous other planning applications
- The model-based paradigm can reduce up-front and recurring costs of MPS development, but need a roadmap for progress.
Conclusion

• Resources for automated planning and model-based planning:
 – http://eecs.oregonstate.edu/ipc-learn/
Conclusion

- References for model-based space-mission applications:
 - FRATINI, S., PECORA, F., and CESTA, A. Unifying Planning and Scheduling as Timelines in a Component-Based Perspective. *Archives of Control Sciences, 18(2):231-271, 2008.*
Planning vs Scheduling: The Computer Science View

• Scheduling
 – Given a fixed list of activities and a set of constraints (and possibly preferences)
 – Order the activities so that all constraints are satisfied (and there is no preferred ordering)

• Planning
 – Given a state of the world, a set of desired states, and a set of action types that change the world
 – Choose actions to execute to reach the goal

• “Inside every planning problem there is lurks a scheduling problem.”
Planning vs Scheduling: The Computer Science View

• How long does it take?
 – Checking a plan or schedule is ‘easy’
 • Because the constraints are ‘easy’ to check
 – Scheduling n activities requires generating n! schedules in the worst case
 • Ensuring all constraints are satisfied allows you to stop ‘early’
 • Optimal scheduling usually takes longer
 – Planning takes longer than scheduling
 • Since you have to select actions and order them
 – Special cases take less time (e.g. LPs)
Flavors of Modeling Languages

- STRIPS
- ADL
- PDDL
 - PDDL+
 - Processes
- Timeline-centric
 - SAS
 - IxTeT
 - ‘NASA’ languages (NDDL, ANML, AML)
Models and Plans

• If you have a model:
 – You can pose planning problems
 • can you reach the goal from the initial state?
 – You have the basics for representing plans too
 • A plan is an ordered list of action names
 • Possibly coupled with an ordered list of states of state variables, resources
 • Also possibly coupled with the rules linking actions, conditions and effects
Object Mechanism Group
Standards (sort of)

• OWL (Web Ontology Language)
 – Objects and Relationships

• UML
 – Petrie Nets / State Charts and SysML

• SPS (Sensor Planning Service)
 – Open GIS interface for managing sensors

• XTCE / XTEDS
 – Spacecraft command and data

• Procedure Representation Language
 – XML representation of procedures