

# Why ESA is promoting Academia and Industry Partnership? And how?

A. Donati, - H/Adv. Mission Concepts & Technologies Office R. Bertrand - H/R&T Office ESA - ESOC

SpaceOps Workshop @ Abingdon, UK 14 June 20

### ESA is a Technical Agency



- Ambitious missions need:
  - The ability to define, implement and verify complex technical systems together with the ability to manage the work
    ..... With limited resources



#### – FSA needs:

- Knowledge on suitable enabling technologies, processes, tools
  - to initiate, define, lead,
    develop critical technologies
- Hands-on technical and managerial competence



ESA, Academia & Industry | A. Donati, R. Bertrand | Abingdon, UK | 14 June 20 | HSO | Slide 2

## ESA is a political Agency



- Needs to "produce" high quality results
  - At lowest price
  - Low risk
- Needs to implement
  - max. industrial return (>90%)
  - Geo-return and harmonisation principles at European level
  - Suitable work shares with National Space Agencies

### ESA's lines of forces





# **ESA Context in Operations**



- Operations are by tendency conservative (cost, risk, schedule)
- Innovation and new technologies are perceived as potential trouble makers for projects (as long as they are not enabling and validated)
- **External partners** (academia and industry) are vital to ensure:
  - Availability of new technologies
  - Innovative push technologies, methods, tools
  - Maintain and evolve technical competence in ESA and industry
  - Allow for a sane and sustained renewal of competences, personal, methods
  - Explore and take new avenues

# ESA partnership schemes: Technologies and Strategies



- Technology strategies
  - European Space Technology Master Plan (ESTMP)
  - Collection, harmonisation, priorisation of technology requirements
  - R&T Activities definition

Involving internal ESA, National Space Agencies, industry on a regular and structured basis

# ESA partnership schemes: R&T Cooperation



#### **Drivers**:

- Technology spin-in
- Innovation and technology exploration (reservation outside immediate constraints of mission/user needs)
- Mutual build-up of expertise
  (e.g. bridging the gap between operations & advanced technology)
- Hook-up keeps the link with high-potential innovative communities (hamradio, cubsats, open source, automobile, telecoms, etc.)
- Prepare recruitments of future high-potential ESA staff

# ESA partnership schemes: R&T Cooperation (2)



### ESA cooperation tracks with Academia:

- Internships, master thesis
- Young Graduate Programme
- Research Fellowship programme
- Network Partnering Programme (see next slide)

### ESA cooperation tracks with Industry & Academia:

- Innovation Triangle (inventor + developer + customer)
- Business Incubators (at all ESA sites, mainly SME)
- StarTiger (small "tiger team")
- Technology Transfer Programme (TTP)
- GSP, TRP, GSTP with involvement of Academia

# ESA partnership schemes: Network Partnering Programme



- Strategic partnership ESA⇔R&T-Partners for engineering PhDs
  - Agreement between ESA technical division and equivalent R&T partner (e.g. university chair)
  - Reinforced contacts of key personnel,
    mutual awareness of competencies, interests, R&D areas
  - Direct contacts with first class junior R&T staff
  - Shared/agreed presence at ESA and R&D partner's premises, co-financing 50% / 50%, typically 3 years

# NPI Example: Operation of Autonomous Elements (ESA)



### **Robotic Exploration:**

- Signal delays
- Real-time requirements on surface
- Unstructured environment
- Sensory limitations

#### **Enabling Technologies for:**

- Autonomous robotic elements
- Autonomous operations



# NPI Example: Operation of Autonom. Elements (TU Darmstadt)





- Autonomous robotic model system
- Behaviour controlled
- "Off-line" ground segment

### Cooperation:

 PhD (NPI) on space operations for autonomous systems

# NPI Example: Operation of Autonom. Elements (TU Darmstadt)







#### R&T partner:

- Robotic system and know-how
- Autonomous operations concepts

#### **ESA**

- Space operations concepts/experience
- Ground segment infrastructure



- Common / complementary development activity (Win/Win)
- Innovative and relevant use case
- Spin-back potential for terrestrial applications
- Show case cooperation

### Conclusions



Partnerships with academia / industry for ESA are instrumental to

- Balance the lines of forces between traditional and innovative technology and processes
- Maintain and evolve a sane level of in-house technical expertise (interpersonal contacts and staff recruitments)
- Be linked to non-space developments and expertise
- Hook-up to highly creative specialists communities
- Implement R&T activities with a high degree of work delegation outside of ESA (industrial return)